Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Mol Microbiol ; 121(4): 798-813, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38284496

ABSTRACT

Small multidrug resistance transporters efflux toxic compounds from bacteria and are a minimal system to understand multidrug transport. Most previous studies have focused on EmrE, the model SMR from Escherichia coli, finding that EmrE has a broader substrate profile than previously thought and that EmrE may perform multiple types of transport, resulting in substrate-dependent resistance or susceptibility. Here, we performed a broad screen to identify potential substrates of three other SMRs: PAsmr from Pseudomonas aeruginosa; FTsmr from Francisella tularensis; and SAsmr from Staphylococcus aureus. This screen tested metabolic differences in E. coli expressing each transporter versus an inactive mutant, for a clean comparison of sequence and substrate-specific differences in transporter function, and identified many substrates for each transporter. In general, resistance compounds were charged, and susceptibility substrates were uncharged, but hydrophobicity was not correlated with phenotype. Two resistance hits and two susceptibility hits were validated via growth assays and IC50 calculations. Susceptibility is proposed to occur via substrate-gated proton leak, and the addition of bicarbonate antagonizes the susceptibility phenotype, consistent with this hypothesis.


Subject(s)
Escherichia coli Proteins , Francisella tularensis , Escherichia coli/genetics , Francisella tularensis/metabolism , Pseudomonas aeruginosa/metabolism , Staphylococcus aureus/metabolism , Escherichia coli Proteins/metabolism , Antiporters/genetics , Membrane Transport Proteins/metabolism , Drug Resistance, Multiple
2.
bioRxiv ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-37808795

ABSTRACT

Small Multidrug Resistance (SMR) transporters are key players in the defense of multidrug-resistant pathogens to toxins and other homeostasis-perturbing compounds. However, recent evidence demonstrates that EmrE, an SMR from Escherichia coli and a model for understanding transport, can also induce susceptibility to some compounds by drug-gated proton leak. This runs down the ∆pH component of the Proton Motive Force (PMF), reducing viability of the affected bacteria. Proton leak may provide an unexplored drug target distinct from the targets of most known antibiotics. Activating proton leak requires an SMR to be merely present, rather than be the primary resistance mechanism, and dissipates the energy source for many other efflux pumps. PAsmr, an EmrE homolog from P. aeruginosa, transports many EmrE substrates in cells and purified systems. We hypothesized that PAsmr, like EmrE, may confer susceptibility to some compounds via drug-gated proton leak. Growth assays of E. coli expressing PAsmr displayed substrate-dependent resistance and susceptibility phenotypes, and in vitro solid-supported membrane electrophysiology experiments revealed that PAsmr performs both antiport and substrate-gated proton uniport, demonstrating the same functional promiscuity observed in EmrE. Growth assays of P. aeruginosa strain PA14 demonstrated that PAsmr contributes resistance to some antimicrobial compounds, but no growth defect is observed with susceptibility substrates, suggesting P. aeruginosa can compensate for the proton leak occurring through PAsmr. These phenotypic differences between P. aeruginosa and E. coli advance our understanding of underlying resistance mechanisms in P. aeruginosa and prompt further investigation into the role that SMRs play in antibiotic resistance in pathogens.

3.
J Mol Biol ; 435(24): 168340, 2023 12 15.
Article in English | MEDLINE | ID: mdl-37924862

ABSTRACT

Poly(UG) or "pUG" RNAs are UG or GU dinucleotide repeat sequences which are highly abundant in eukaryotes. Post-transcriptional addition of pUGs to RNA 3' ends marks mRNAs as vectors for gene silencing in C. elegans. We previously determined the crystal structure of pUG RNA bound to the ligand N-methyl mesoporphyrin IX (NMM), but the structure of free pUG RNA is unknown. Here we report the solution structure of the free pUG RNA (GU)12, as determined by nuclear magnetic resonance spectroscopy and small and wide-angle x-ray scattering (NMR-SAXS-WAXS). The low complexity sequence and 4-fold symmetry of the structure result in overlapped NMR signals that complicate chemical shift assignment. We therefore utilized single site-specific deoxyribose modifications which did not perturb the structure and introduced well-resolved methylene signals that are easily identified in NMR spectra. The solution structure ensemble has a root mean squared deviation (RMSD) of 0.62 Å and is a compact, left-handed quadruplex with a Z-form backbone, or "pUG fold." Overall, the structure agrees with the crystal structure of (GU)12 bound to NMM, indicating the pUG fold is unaltered by docking of the NMM ligand. The solution structure reveals conformational details that could not be resolved by x-ray crystallography, which explain how the pUG fold can form within longer RNAs.


Subject(s)
Poly G , Poly U , RNA , Animals , Caenorhabditis elegans/genetics , Crystallography, X-Ray , Ligands , Models, Molecular , RNA/chemistry , Scattering, Small Angle , X-Ray Diffraction , Poly U/chemistry , Poly G/chemistry , Nucleic Acid Conformation
4.
J Am Chem Soc ; 145(18): 10104-10115, 2023 05 10.
Article in English | MEDLINE | ID: mdl-37097985

ABSTRACT

The bacterial transporter EmrE is a homo-dimeric membrane protein that effluxes cationic polyaromatic substrates against the concentration gradient by coupling to proton transport. As the archetype of the small multidrug resistance family of transporters, EmrE structure and dynamics provide atomic insights into the mechanism of transport by this family of proteins. We recently determined high-resolution structures of EmrE in complex with a cationic substrate, tetra(4-fluorophenyl)phosphonium (F4-TPP+), using solid-state NMR spectroscopy and an S64V-EmrE mutant. The substrate-bound protein exhibits distinct structures at acidic and basic pH, reflecting changes upon binding or release of a proton from residue E14, respectively. To obtain insight into the protein dynamics that mediate substrate transport, here we measure 15N rotating-frame spin-lattice relaxation (R1ρ) rates of F4-TPP+-bound S64V-EmrE in lipid bilayers under magic-angle spinning (MAS). Using perdeuterated and back-exchanged protein and 1H-detected 15N spin-lock experiments under 55 kHz MAS, we measured 15N R1ρ rates site-specifically. Many residues show spin-lock field-dependent 15N R1ρ relaxation rates. This relaxation dispersion indicates the presence of backbone motions at a rate of about 6000 s-1 at 280 K for the protein at both acidic and basic pH. This motional rate is 3 orders of magnitude faster than the alternating access rate but is within the range estimated for substrate binding. We propose that these microsecond motions may allow EmrE to sample different conformations to facilitate substrate binding and release from the transport pore.


Subject(s)
Escherichia coli Proteins , Escherichia coli Proteins/chemistry , Lipid Bilayers/chemistry , Protons , Antiporters/metabolism , Membrane Transport Proteins
5.
J Biol Chem ; 299(2): 102805, 2023 02.
Article in English | MEDLINE | ID: mdl-36529287

ABSTRACT

EmrE, a small multidrug resistance transporter from Escherichia coli, confers broad-spectrum resistance to polyaromatic cations and quaternary ammonium compounds. Previous transport assays demonstrate that EmrE transports a +1 and a +2 substrate with the same stoichiometry of two protons:one cationic substrate. This suggests that EmrE substrate binding capacity is limited to neutralization of the two essential glutamates, E14A and E14B (one from each subunit in the antiparallel homodimer), in the primary binding site. Here, we explicitly test this hypothesis, since EmrE has repeatedly broken expectations for membrane protein structure and transport mechanism. We previously showed that EmrE can bind a +1 cationic substrate and proton simultaneously, with cationic substrate strongly associated with one E14 residue, whereas the other remains accessible to bind and transport a proton. Here, we demonstrate that EmrE can bind a +2 cation substrate and a proton simultaneously using NMR pH titrations of EmrE saturated with divalent substrates, for a net +1 charge in the transport pore. Furthermore, we find that EmrE can alternate access and transport a +2 substrate and proton at the same time. Together, these results lead us to conclude that E14 charge neutralization does not limit the binding and transport capacity of EmrE.


Subject(s)
Antiporters , Catalytic Domain , Escherichia coli Proteins , Escherichia coli , Glutamates , Static Electricity , Antiporters/chemistry , Antiporters/metabolism , Escherichia coli/chemistry , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Glutamates/chemistry , Glutamates/metabolism , Protons , Substrate Specificity , Protein Binding , Nuclear Magnetic Resonance, Biomolecular , Hydrogen-Ion Concentration , Drug Resistance, Multiple, Bacterial , Ion Transport
6.
Nat Commun ; 13(1): 7655, 2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36496486

ABSTRACT

Small multidrug resistance (SMR) transporters contribute to antibiotic resistance through proton-coupled efflux of toxic compounds. Previous biophysical studies of the E. coli SMR transporter EmrE suggest that it should also be able to perform proton/toxin symport or uniport, leading to toxin susceptibility rather than resistance in vivo. Here we show EmrE does confer susceptibility to several previously uncharacterized small-molecule substrates in E. coli, including harmane. In vitro electrophysiology assays demonstrate that harmane binding triggers uncoupled proton flux through EmrE. Assays in E. coli are consistent with EmrE-mediated dissipation of the transmembrane pH gradient as the mechanism underlying the in vivo phenotype of harmane susceptibility. Furthermore, checkerboard assays show this alternative EmrE transport mode can synergize with some existing antibiotics, such as kanamycin. These results demonstrate that it is possible to not just inhibit multidrug efflux, but to activate alternative transport modes detrimental to bacteria, suggesting a strategy to address antibiotic resistance.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Antiporters/chemistry , Protons , Drug Resistance, Multiple , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism
7.
Nat Commun ; 13(1): 991, 2022 02 18.
Article in English | MEDLINE | ID: mdl-35181664

ABSTRACT

The homo-dimeric bacterial membrane protein EmrE effluxes polyaromatic cationic substrates in a proton-coupled manner to cause multidrug resistance. We recently determined the structure of substrate-bound EmrE in phospholipid bilayers by measuring hundreds of protein-ligand HN-F distances for a fluorinated substrate, 4-fluoro-tetraphenylphosphonium (F4-TPP+), using solid-state NMR. This structure was solved at low pH where one of the two proton-binding Glu14 residues is protonated. Here, to understand how substrate transport depends on pH, we determine the structure of the EmrE-TPP complex at high pH, where both Glu14 residues are deprotonated. The high-pH complex exhibits an elongated and hydrated binding pocket in which the substrate is similarly exposed to the two sides of the membrane. In contrast, the low-pH complex asymmetrically exposes the substrate to one side of the membrane. These pH-dependent EmrE conformations provide detailed insights into the alternating-access model, and suggest that the high-pH conformation may facilitate proton binding in the presence of the substrate, thus accelerating the conformational change of EmrE to export the substrate.


Subject(s)
Antiporters/metabolism , Escherichia coli Proteins/metabolism , Protons , Antiporters/ultrastructure , Drug Resistance, Multiple, Bacterial , Escherichia coli Proteins/ultrastructure , Hydrogen-Ion Concentration , Molecular Docking Simulation , Nuclear Magnetic Resonance, Biomolecular , Onium Compounds/metabolism , Organophosphorus Compounds/metabolism
8.
J Biol Chem ; 297(4): 101220, 2021 10.
Article in English | MEDLINE | ID: mdl-34562455

ABSTRACT

Transport stoichiometry determination can provide great insight into the mechanism and function of ion-coupled transporters. Traditional reversal potential assays are a reliable, general method for determining the transport stoichiometry of ion-coupled transporters, but the time and material costs of this technique hinder investigations of transporter behavior under multiple experimental conditions. Solid-supported membrane electrophysiology (SSME) allows multiple recordings of liposomal or membrane samples adsorbed onto a sensor and is sensitive enough to detect transport currents from moderate-flux transporters that are inaccessible to traditional electrophysiology techniques. Here, we use SSME to develop a new method for measuring transport stoichiometry with greatly improved throughput. Using this technique, we were able to verify the recent report of a fixed 2:1 stoichiometry for the proton:guanidinium antiporter Gdx, reproduce the 1H+:2Cl- antiport stoichiometry of CLC-ec1, and confirm loose proton:nitrate coupling for CLC-ec1. Furthermore, we were able to demonstrate quantitative exchange of internal contents of liposomes adsorbed onto SSME sensors to allow multiple experimental conditions to be tested on a single sample. Our SSME method provides a fast, easy, general method for measuring transport stoichiometry, which will facilitate future mechanistic and functional studies of ion-coupled transporters.


Subject(s)
Antiporters/chemistry , Electrophysiological Phenomena , Liposomes/chemistry , Antiporters/metabolism , Ion Transport
9.
Nat Commun ; 12(1): 172, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33420032

ABSTRACT

The dimeric transporter, EmrE, effluxes polyaromatic cationic drugs in a proton-coupled manner to confer multidrug resistance in bacteria. Although the protein is known to adopt an antiparallel asymmetric topology, its high-resolution drug-bound structure is so far unknown, limiting our understanding of the molecular basis of promiscuous transport. Here we report an experimental structure of drug-bound EmrE in phospholipid bilayers, determined using 19F and 1H solid-state NMR and a fluorinated substrate, tetra(4-fluorophenyl) phosphonium (F4-TPP+). The drug-binding site, constrained by 214 protein-substrate distances, is dominated by aromatic residues such as W63 and Y60, but is sufficiently spacious for the tetrahedral drug to reorient at physiological temperature. F4-TPP+ lies closer to the proton-binding residue E14 in subunit A than in subunit B, explaining the asymmetric protonation of the protein. The structure gives insight into the molecular mechanism of multidrug recognition by EmrE and establishes the basis for future design of substrate inhibitors to combat antibiotic resistance.


Subject(s)
Antiporters/chemistry , Antiporters/drug effects , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/drug effects , Lipid Bilayers/chemistry , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/drug effects , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Binding Sites , Biological Transport/drug effects , Drug Resistance, Multiple, Bacterial/drug effects , Escherichia coli/metabolism , Molecular Dynamics Simulation , Protein Conformation
10.
J Gen Physiol ; 152(1)2020 01 06.
Article in English | MEDLINE | ID: mdl-31816638

ABSTRACT

Secondary active transporters couple the transport of an ion species down its concentration gradient to the uphill transport of another substrate. Despite the importance of secondary active transport to multidrug resistance, metabolite transport, and nutrient acquisition, among other biological processes, the microscopic steps of the coupling mechanism are not well understood. Often, transport models illustrate coupling mechanisms through a limited number of "major" conformations or states, yet recent studies have indicated that at least some transporters violate these models. The small multidrug resistance transporter EmrE has been shown to couple proton influx to multidrug efflux via a mechanism that incorporates both "major" and "minor" conformational states and transitions. The resulting free exchange transport model includes multiple leak pathways and theoretically allows for both exchange and cotransport of ion and substrate. To better understand how coupled transport can be achieved in such a model, we numerically simulate a free-exchange model of transport to determine the step-by-step requirements for coupled transport. We find that only moderate biasing of rate constants for key transitions produce highly efficient net transport approaching a perfectly coupled, stoichiometric model. We show how a free-exchange model can enable complex phenotypes, including switching transport direction with changing environmental conditions or substrates. This research has broad implications for synthetic biology, as it demonstrates the utility of free-exchange transport models and the fine tuning required for perfectly coupled transport.


Subject(s)
Antiporters/metabolism , Escherichia coli Proteins/metabolism , Models, Theoretical , Antiporters/chemistry , Escherichia coli Proteins/chemistry , Ion Transport , Kinetics , Protons
11.
Biophys J ; 117(2): 388-398, 2019 07 23.
Article in English | MEDLINE | ID: mdl-31301804

ABSTRACT

The voltage-sensing domain (VSD) is a conserved structural module that regulates the gating of voltage-dependent ion channels in response to a change in membrane potential. Although the structures of many VSD-containing ion channels are now available, our understanding of the structural dynamics associated with gating transitions remains limited. To probe dynamics with site-specific resolution, we utilized NMR spectroscopy to characterize the VSD derived from Shaker potassium channel in 1-palmitoyl-2-hydroxy-sn-glycero-3-phospho-(1'-rac-glycerol) (LPPG) micelles. The backbone dihedral angles predicted based on secondary chemical shifts using torsion angle likeliness obtained from shift (TALOS+) showed that the Shaker-VSD shares many structural features with the homologous Kv1.2/2.1 chimera, including a transition from α-helix to 310 helix in the C-terminal portion of the fourth transmembrane helix. Nevertheless, there are clear differences between the Shaker-VSD and Kv1.2/2.1 chimera in the S2-S3 linker and S3 transmembrane region, where the organization of secondary structure elements in Shaker-VSD appears to more closely resemble the KvAP-VSD. Comparison of microsecond-long molecular dynamics simulations of Kv 1.2-VSD in LPPG micelles and a 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) bilayer showed that LPPG micelles do not induce significant structural distortion in the isolated voltage sensor. To assess the integrity of the tertiary fold, we directly probed the binding of BrMT analog 2-[2-({[3-(2-amino-ethyl)-6-bromo-1H-indol-2-yl]methoxy}k7methyl)-6-bromo-1H-indol-3-yl]ethan-1-amine (BrET), a gating modifier toxin, and identified the location of the putative binding site. Our results suggest that the Shaker-VSD in LPPG micelles is in a native-like fold and is likely to provide valuable insights into the dynamics of voltage-gating and its regulation.


Subject(s)
Glycerol/analogs & derivatives , Glycerol/chemistry , Micelles , Nuclear Magnetic Resonance, Biomolecular , Shaker Superfamily of Potassium Channels/chemistry , Amino Acid Sequence , Protein Domains , Protein Structure, Secondary
12.
J Mol Biol ; 431(15): 2777-2789, 2019 07 12.
Article in English | MEDLINE | ID: mdl-31158365

ABSTRACT

Proteins that perform active transport must alternate the access of a binding site, first to one side of a membrane and then to the other, resulting in the transport of bound substrates across the membrane. To better understand this process, we sought to identify mutants of the small multidrug resistance transporter EmrE with reduced rates of alternating access. We performed extensive scanning mutagenesis by changing every amino acid residue to Val, Ala, or Gly, and then screening the drug resistance phenotypes of the resulting mutants. We identified EmrE mutants that had impaired transport activity but retained the ability to bind substrate and further tested their alternating access rates using NMR. Ultimately, we were able to identify a single mutation, S64V, which significantly reduced the rate of alternating access but did not impair substrate binding. Six other transport-impaired mutants did not have reduced alternating access rates, highlighting the importance of other aspects of the transport cycle to achieve drug resistance activity in vivo. To better understand the transport cycle of EmrE, efforts are now underway to determine a high-resolution structure using the S64V mutant identified here.


Subject(s)
Amino Acid Substitution , Antiporters/genetics , Antiporters/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Binding Sites , Biological Transport , Drug Resistance, Multiple , Escherichia coli/genetics , Models, Molecular , Molecular Dynamics Simulation , Protein Binding , Protein Conformation
13.
J Biol Chem ; 293(49): 19137-19147, 2018 12 07.
Article in English | MEDLINE | ID: mdl-30287687

ABSTRACT

Ion-coupled transporters must regulate access of ions and substrates into and out of the binding site to actively transport substrates and minimize dissipative leak of ions. Within the single-site alternating access model, competitive substrate binding forms the foundation of ion-coupled antiport. Strict competition between substrates leads to stoichiometric antiport without slippage. However, recent NMR studies of the bacterial multidrug transporter EmrE have demonstrated that this multidrug transporter can simultaneously bind drug and proton, which will affect the transport stoichiometry and efficiency of coupled antiport. Here, we investigated the nature of substrate competition in EmrE using multiple methods to measure proton release upon the addition of saturating concentrations of drug as a function of pH. The resulting proton-release profile confirmed simultaneous binding of drug and proton, but suggested that a residue outside EmrE's Glu-14 binding site may release protons upon drug binding. Using NMR-monitored pH titrations, we trace this drug-induced deprotonation event to His-110, EmrE's C-terminal residue. Further NMR experiments disclosed that the C-terminal tail is strongly coupled to EmrE's drug-binding domain. Consideration of our results alongside those from previous studies of EmrE suggests that this conserved tail participates in secondary gating of EmrE-mediated proton/drug transport, occluding the binding pocket of fully protonated EmrE in the absence of drug to prevent dissipative proton transport.


Subject(s)
Antiporters/metabolism , Escherichia coli Proteins/metabolism , Onium Compounds/metabolism , Organophosphorus Compounds/metabolism , Protons , Antiporters/chemistry , Binding Sites , Escherichia coli/chemistry , Escherichia coli Proteins/chemistry , Glutamic Acid/chemistry , Histidine/chemistry , Hydrogen-Ion Concentration , Onium Compounds/chemistry , Organophosphorus Compounds/chemistry , Protein Binding , Protein Conformation , Protein Domains
14.
Anal Biochem ; 549: 130-135, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29559333

ABSTRACT

Membrane transporters are an important class of proteins which remain challenging to study. Transport assays are crucial to developing our understanding of such proteins as they allow direct measurement of their transport activity. However, currently available methods for monitoring liposomal loading of organic substrates primarily rely on detection of radioactively or fluorescently labeled substrates. The requirement of a labeled substrate significantly restricts the systems and substrates that can be studied. Here we present a mass spectrometry based detection method for liposomal uptake assays that eliminates the need for labeled substrates. We demonstrate the efficacy of the assay with EmrE, a small multidrug resistance transporter found in E. coli that has become a model transport system for the study of secondary active transport. Furthermore, we develop a method for differentiation between bound and transported substrate, enhancing the information gained from the liposomal uptake assay. The transport assay presented here is readily applicable to other transport systems and substrates.


Subject(s)
Antiporters/chemistry , Drug Resistance, Multiple, Bacterial , Escherichia coli Proteins/chemistry , Escherichia coli/chemistry , Liposomes/chemistry , Mass Spectrometry/methods , Biological Transport, Active
15.
Proc Natl Acad Sci U S A ; 114(47): E10083-E10091, 2017 11 21.
Article in English | MEDLINE | ID: mdl-29114048

ABSTRACT

EmrE is a small multidrug resistance transporter found in Escherichia coli that confers resistance to toxic polyaromatic cations due to its proton-coupled antiport of these substrates. Here we show that EmrE breaks the rules generally deemed essential for coupled antiport. NMR spectra reveal that EmrE can simultaneously bind and cotransport proton and drug. The functional consequence of this finding is an exceptionally promiscuous transporter: not only can EmrE export diverse drug substrates, it can couple antiport of a drug to either one or two protons, performing both electrogenic and electroneutral transport of a single substrate. We present a free-exchange model for EmrE antiport that is consistent with these results and recapitulates ∆pH-driven concentrative drug uptake. Kinetic modeling suggests that free exchange by EmrE sacrifices coupling efficiency but boosts initial transport speed and drug release rate, which may facilitate efficient multidrug efflux.


Subject(s)
Antiporters/chemistry , Drug Resistance, Multiple, Bacterial/genetics , Escherichia coli Proteins/chemistry , Escherichia coli/metabolism , Onium Compounds/metabolism , Organophosphorus Compounds/metabolism , Protons , Xenobiotics/metabolism , Antiporters/genetics , Antiporters/metabolism , Binding Sites , Biological Transport , Dicyclohexylcarbodiimide/toxicity , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Expression , Hydrogen-Ion Concentration , Kinetics , Molecular Dynamics Simulation , Onium Compounds/chemistry , Onium Compounds/pharmacology , Organophosphorus Compounds/chemistry , Organophosphorus Compounds/pharmacology , Phosphatidylcholines/chemistry , Phosphatidylcholines/metabolism , Phosphatidylglycerols/chemistry , Phosphatidylglycerols/metabolism , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Proteolipids/chemistry , Proteolipids/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity , Thermodynamics , Xenobiotics/chemistry , Xenobiotics/pharmacology
16.
J Biomol NMR ; 64(4): 307-32, 2016 04.
Article in English | MEDLINE | ID: mdl-27023095

ABSTRACT

NMR spectroscopy is a powerful technique for determining structural and functional features of biomolecules in physiological solution as well as for observing their intermolecular interactions in real-time. However, complex steps associated with its practice have made the approach daunting for non-specialists. We introduce an NMR platform that makes biomolecular NMR spectroscopy much more accessible by integrating tools, databases, web services, and video tutorials that can be launched by simple installation of NMRFAM software packages or using a cross-platform virtual machine that can be run on any standard laptop or desktop computer. The software package can be downloaded freely from the NMRFAM software download page ( http://pine.nmrfam.wisc.edu/download_packages.html ), and detailed instructions are available from the Integrative NMR Video Tutorial page ( http://pine.nmrfam.wisc.edu/integrative.html ).


Subject(s)
Magnetic Resonance Spectroscopy , Nuclear Magnetic Resonance, Biomolecular , Hydrogen Bonding , Magnetic Resonance Spectroscopy/methods , Models, Molecular , Molecular Conformation , Nuclear Magnetic Resonance, Biomolecular/methods , Nucleic Acids/chemistry , Proteins/chemistry , Research , Software , Web Browser
17.
Proc Natl Acad Sci U S A ; 112(50): 15366-71, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26621745

ABSTRACT

Flux-dependent inactivation that arises from functional coupling between the inner gate and the selectivity filter is widespread in ion channels. The structural basis of this coupling has only been well characterized in KcsA. Here we present NMR data demonstrating structural and dynamic coupling between the selectivity filter and intracellular constriction point in the bacterial nonselective cation channel, NaK. This transmembrane allosteric communication must be structurally different from KcsA because the NaK selectivity filter does not collapse under low-cation conditions. Comparison of NMR spectra of the nonselective NaK and potassium-selective NaK2K indicates that the number of ion binding sites in the selectivity filter shifts the equilibrium distribution of structural states throughout the channel. This finding was unexpected given the nearly identical crystal structure of NaK and NaK2K outside the immediate vicinity of the selectivity filter. Our results highlight the tight structural and dynamic coupling between the selectivity filter and the channel scaffold, which has significant implications for channel function. NaK offers a distinct model to study the physiologically essential connection between ion conduction and channel gating.


Subject(s)
Bacillus cereus/chemistry , Potassium Channels/chemistry , Potassium/metabolism , Allosteric Regulation , Crystallography, X-Ray , Ion Channel Gating , Ions , Magnetic Resonance Spectroscopy , Mutant Proteins/chemistry , Point Mutation , Protein Folding , Protein Structure, Secondary , Solutions , Temperature , Time Factors
18.
J Gen Physiol ; 146(6): 445-61, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26573622

ABSTRACT

The small multidrug resistance transporter EmrE is a homodimer that uses energy provided by the proton motive force to drive the efflux of drug substrates. The pKa values of its "active-site" residues--glutamate 14 (Glu14) from each subunit--must be poised around physiological pH values to efficiently couple proton import to drug export in vivo. To assess the protonation of EmrE, pH titrations were conducted with (1)H-(15)N TROSY-HSQC nuclear magnetic resonance (NMR) spectra. Analysis of these spectra indicates that the Glu14 residues have asymmetric pKa values of 7.0 ± 0.1 and 8.2 ± 0.3 at 45°C and 6.8 ± 0.1 and 8.5 ± 0.2 at 25°C. These pKa values are substantially increased compared with typical pKa values for solvent-exposed glutamates but are within the range of published Glu14 pKa values inferred from the pH dependence of substrate binding and transport assays. The active-site mutant, E14D-EmrE, has pKa values below the physiological pH range, consistent with its impaired transport activity. The NMR spectra demonstrate that the protonation states of the active-site Glu14 residues determine both the global structure and the rate of conformational exchange between inward- and outward-facing EmrE. Thus, the pKa values of the asymmetric active-site Glu14 residues are key for proper coupling of proton import to multidrug efflux. However, the results raise new questions regarding the coupling mechanism because they show that EmrE exists in a mixture of protonation states near neutral pH and can interconvert between inward- and outward-facing forms in multiple different protonation states.


Subject(s)
Antiporters/chemistry , Escherichia coli Proteins/chemistry , Protons , Amino Acid Sequence , Antiporters/metabolism , Escherichia coli Proteins/metabolism , Molecular Sequence Data , Protein Binding
19.
Biophys J ; 107(3): 613-620, 2014 Aug 05.
Article in English | MEDLINE | ID: mdl-25099800

ABSTRACT

EmrE is a small multidrug resistance transporter that has been well studied as a model for secondary active transport. Because transport requires the protein to convert between at least two states open to opposite sides of the membrane, it is expected that blocking these conformational transitions will prevent transport activity. We have previously shown that NMR can quantitatively measure the transition between the open-in and open-out states of EmrE in bicelles. Now, we have used the antiparallel EmrE crystal structure to design a cross-link to inhibit this conformational exchange process. We probed the structural, dynamic, and functional effects of this cross-link with NMR and in vivo efflux assays. Our NMR results show that our antiparallel cross-link performs as predicted: dramatically reducing conformational exchange while minimally perturbing the overall structure of EmrE and essentially trapping EmrE in a single state. The same cross-link also impairs ethidium efflux activity by EmrE in Escherichia coli. This confirms the hypothesis that transport can be inhibited simply by blocking conformational transitions in a properly folded transporter. The success of our cross-linker design also provides further evidence that the antiparallel crystal structure provides a good model for functional EmrE.


Subject(s)
Antiporters/chemistry , Escherichia coli Proteins/chemistry , Molecular Dynamics Simulation , Amino Acid Sequence , Antiporters/metabolism , Biological Transport , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Ethidium/chemistry , Ethidium/pharmacology , Molecular Sequence Data , Protein Binding
20.
Biochim Biophys Acta ; 1838(7): 1817-22, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24680655

ABSTRACT

The small multi-drug resistant (SMR) transporter EmrE functions as a homodimer. Although the small size of EmrE would seem to make it an ideal model system, it can also make it challenging to work with. As a result, a great deal of controversy has surrounded even such basic questions as the oligomeric state. Here we show that the purified protein is a homodimer in isotropic bicelles with a monomer-dimer equilibrium constant (KMD(2D)) of 0.002-0.009mol% for both the substrate-free and substrate-bound states. Thus, the dimer is stabilized in bicelles relative to detergent micelles where the KMD(2D) is only 0.8-0.95mol% (Butler et al. 2004). In dilauroylphosphatidylcholine (DLPC) liposomes KMD(2D) is 0.0005-0.0008mol% based on Förster resonance energy transfer (FRET) measurements, slightly tighter than bicelles. These results emphasize the importance of the lipid membrane in influencing dimer affinity.


Subject(s)
Antiporters/metabolism , Escherichia coli Proteins/metabolism , Membrane Lipids/metabolism , Biological Transport , Escherichia coli/metabolism , Lipid Bilayers/metabolism , Liposomes/metabolism , Micelles , Protein Multimerization
SELECTION OF CITATIONS
SEARCH DETAIL
...